In 2011, Pacific Harbor Line (PHL) repowered 16 locomotives in their fleet with new low-emission “Tier 3-plus” engines that emit over 80 percent less diesel particulate matter and 38 percent less nitrogen oxides than the previous generation engines they replaced, making PHL’s fleet one of the cleanest in North America. The previous engines, which came online in 2008, had already reduced air emissions dramatically. Overall, the Tier 3-plus engines represent a greater than 90 percent reduction in diesel particulate matter and almost 75 percent reduction in nitrogen oxide emissions compared to the older, unregulated engines that were servicing the ports just five years ago.

The repower project totaled approximately $12 million and was largely funded by a grant from the Carl Moyer Memorial Air Quality Attainment Program administered by the South Coast Air Quality Management District and the California Air Resources Board. The ports of Long Beach and Los Angeles also facilitated the project by entering into agreements with PHL that made it possible for the railroad company to commit to the long-term use of low emission locomotives.

Photo Credit: Tom Paiva/Pacific Harbor Line
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... ES-1

SECTION 1 INTRODUCTION ... 1

1.1 Reason for Study ... 1

1.2 Scope of Study ... 2

1.2.1 Pollutants .. 2

1.2.2 Emission Sources ... 3

1.2.3 Geographical Domain ... 4

1.2.4 Sources Not Included in the Emissions Inventory 12

1.3 Report Organization ... 12

SECTION 2 OCEAN-GOING VESSELS ... 13

2.1 Source Description ... 13

2.2 Shipping Routes ... 17

2.3 Data and Information Acquisition ... 18

2.3.1 Marine Exchange of Southern California 19

2.3.2 Vessel Speed Reduction Program Data 19

2.3.3 Jacobsen Pilot Service ... 20

2.3.4 IHS Fairplay - Lloyd’s Register of Ships 20

2.3.5 Vessel Boarding Program Survey Data 21

2.3.6 Vessel Shore Power Data ... 21

2.4 Operational Profiles .. 22

2.5 Emissions Estimation Methodology ... 24

2.5.1 Propulsion Engine Maximum Continuous Rated (MCR) Power 25

2.5.2 Propulsion Engine Load Factor ... 25

2.5.3 Propulsion Engine Activity ... 26

2.5.4 Propulsion Engine Emission Factors 27

2.5.5 Propulsion Engines Low Load Emission Factors 29

2.5.6 Propulsion Engine Harbor Maneuvering Loads 33

2.5.7 Propulsion Engine Power Defaults .. 33

2.5.8 Auxiliary Engine Emission Factors .. 33

2.5.9 Auxiliary Engine Load Defaults ... 34

2.5.10 Auxiliary Boiler Emission Factors .. 36

2.5.11 Auxiliary Boiler Load Defaults ... 36

2.5.12 Fuel Correction Factors ... 37

2.5.13 Emission Reduction Technologies .. 40

2.5.14 Changes to methodology from previous years 41

2.6 Emission Estimates ... 42

2.6.1 Emission Estimates by Engine Type 43

2.6.2 Emission Estimates by Engine Type 45

SECTION 3 HARBOR CRAFT ... 74

3.1 Source Description .. 74

3.2 Geographical Domain ... 76
2011 Air Emissions Inventory

3. Data and Information Acquisition
- 3.1 Source Description ... 76
- 3.2 Geographical Domain .. 77
- 3.3 Data and Information Acquisition ... 79
- 3.4 Operational Profiles ... 80
- 3.5 Emissions Estimation Methodology ... 81
 - 3.5.1 Load Factors ... 81
 - 3.5.2 Emission Factors, Deterioration Rates, and Useful Life 82
 - 3.5.3 Harbor Craft Greenhouse Gas Emission Factors 84
 - 3.5.4 Harbor Craft SO₂ Emissions .. 84
 - 3.5.5 Fuel Correction Factors .. 85
 - 3.5.6 Improvements to Methodology from Previous Years 85
- 3.6 Emission Estimates ... 86

4. Cargo Handling Equipment
- 4.1 Source Description .. 89
- 4.2 Geographical Domain ... 90
- 4.3 Data and Information Acquisition .. 92
- 4.4 Operational Profiles ... 93
- 4.5 Emissions Estimation Methodology ... 100
 - 4.5.1 Emission Factors ... 101
 - 4.5.2 Load Factors and Fuel Correction Factors ... 102
 - 4.5.3 CHE Emissions Reduction Technologies and Control Factors 103
 - 4.5.4 Improvements to Methodology from Previous Years 105
- 4.6 Emission Estimates ... 106

5. Railroad Locomotives
- 5.1 Source Description ... 111
- 5.2 Geographical Domain ... 112
- 5.3 Data and Information Acquisition .. 114
- 5.4 Operational Profiles .. 115
- 5.5 Emissions Estimation Methodology ... 116
 - 5.5.1 Switching Locomotive Emissions .. 117
 - 5.5.2 Line Haul Locomotive Emissions .. 120
 - 5.5.3 Improvements to Methodology from Previous Years 125
- 5.6 Emission Estimates ... 125

6. Heavy-Duty Vehicles
- 6.1 Source Description .. 127
- 6.2 Geographical Domain ... 128
- 6.3 Data and Information Acquisition .. 128
- 6.4 Operational Profiles ... 129
 - 6.4.1 On-Terminal Truck Activity ... 129
 - 6.4.2 On-Road Truck Activity .. 131
- 6.5 Emissions Estimation Methodology ... 134
 - 6.5.1 Population and Model Year Distribution .. 135
 - 6.5.2 The EMFAC Model .. 137
 - 6.5.3 Overview of the EMFAC2011 Emissions Calculation Methodology 138
 - 6.5.4 Speed-Specific Emission Factors ... 139
6.5.5 Improvements to Methodology from Previous Years ... 142
6.6 Emission Estimates ... 142

SECTION 7 SUMMARY OF 2011 EMISSION RESULTS .. 144

SECTION 8 COMPARISON OF 2011 AND 2005 FINDINGS AND EMISSION ESTIMATES156
8.1 Ocean-Going Vessels .. 161
8.2 Harbor Craft .. 164
8.3 Cargo Handling Equipment ... 168
8.4 Locomotives .. 175
8.5 Heavy-Duty Vehicles .. 176
8.6 CAAP Progress .. 179

SECTION 9 METRICS PER SOURCE CATEGORY ... 184

SECTION 10 LOOKING FORWARD .. 196
10.1 Anticipated Impacts of Control Programs on Emissions in 2012 ... 196
10.2 Future Improvements to Emissions Inventory Methodologies ... 197

APPENDIX A REGULATORY AND SAN PEDRO BAY PORTS CLEAN AIR ACTION PLAN MEASURES
APPENDIX B OCEAN-GOING VESSELS
APPENDIX C HARBOR CRAFT
APPENDIX D CARGO-HANDLING EQUIPMENT
APPENDIX E HEAVY-DUTY VEHICLES
LIST OF FIGURES

Figure ES.1: South Coast Air Basin Boundary ... ES-2
Figure ES.2: OGV Inventory Geographical Extent ... ES-3
Figure ES.3: 2005-2011 Container Throughput and Vessel Call Change, % ES-4
Figure ES.4: 2011 Port-related Emissions by Category, % .. ES-4
Figure ES.5: 2011 Port-related Emissions by Port Boundary, % ES-7
Figure ES.6: 2011 PM_{10} Emissions in the South Coast Air Basin, % ES-10
Figure ES.7: 2011 PM_{2.5} Emissions in the South Coast Air Basin, % ES-11
Figure ES.8: 2011 DPM Emissions in the South Coast Air Basin, % ES-12
Figure ES.9: 2011 NO\sub{x} Emissions in the South Coast Air Basin, % ES-12
Figure ES.10: 2011 SO\sub{x} Emissions in the South Coast Air Basin, % ES-12
Figure ES.11: 2011 Port Emissions Change, % .. ES-13
Figure ES.12: 2005-2011 Port Emission Efficiency Metric Changes, % ES-14
Figure ES.13: 2005-2011 DPM Reductions to Date .. ES-19
Figure ES.14: 2005-2011 NO\sub{x} Reductions to Date .. ES-20
Figure ES.15: 2005-2011 SO\sub{x} Reductions to Date ... ES-22
Figure 1.1: OGV and Harbor Vessel Out of Port Geographical Extent 5
Figure 1.2: Cargo Handling Equipment Geographical Extent Port of Long Beach Map of Terminals ... 7
Figure 1.3: Railroad Locomotives and Heavy Duty Vehicles Geographical Extent South Coast Air Basin Boundary ... 8
Figure 1.4: Port Area Rail Lines .. 9
Figure 1.5: Air Basin Major Intermodal Rail Routes ... 10
Figure 1.6: Alameda Corridor ... 11
Figure 2.1: 2011 Distribution of Calls by Vessel Type ... 16
Figure 2.2: Major Shipping Routes .. 17
Figure 2.3: 2011 Ocean-going Vessel Emissions by Vessel Type, % 43
Figure 2.4: 2011 Ocean-going Vessel Emissions by Engine Type, % 44
Figure 2.5: 2011 Ocean-going Vessel Emissions by Mode, % 47
Figure 3.1: 2011 Distribution Commercial Harbor Craft ... 76
Figure 3.2: 2011 Distribution of Harbor Craft Engines by Engine Standards, % 80
Figure 3.3: 2011 Harbor Craft Emissions by Harbor Craft Type, % 88
Figure 4.1: 2011 Distribution of Port CHE by Equipment Type 91
Figure 4.2: 2011 Distribution of Port CHE by Terminal Type, % 95
Figure 4.3: 2011 Average Engine Power for CHE Engines at Container Terminals, horsepower .. 99
Figure 4.4: 2011 CHE Emissions by Terminal Type, % .. 107
Figure 4.5: 2011 CHE Emissions by Equipment Type .. 110
Figure 5.1: Typical Line Haul Locomotives .. 113
Figure 5.2: PHL Switching Locomotive ... 114
Figure 5.3: 2011 Port-Related Locomotive Operations Estimated Emissions, % 126
Figure 6.1: Typical Container Truck .. 128
Figure 6.2: Port and Near-Port Roadways ... 132
Figure 6.3: Regional Map ... 133
Figure 6.4: 2011 Engine Model Year Distribution of the Heavy-Duty Truck Fleet 137
Figure 7.1: 2011 Port-related Emissions by Category, %.. 145
Figure 7.2: 2011 PM\textsubscript{10} Emissions in the South Coast Air Basin, % 148
Figure 7.3: 2011 PM\textsubscript{2.5} Emissions in the South Coast Air Basin, %................................. 148
Figure 7.4: 2011 DPM Emissions in the South Coast Air Basin, % .. 149
Figure 7.5: 2011 NO\textsubscript{x} Emissions in the South Coast Air Basin, % 149
Figure 7.6: 2011 SO\textsubscript{x} Emissions in the South Coast Air Basin, % 149
Figure 8.1: 2005-2011 Container Throughput and Vessel Call Change, % 156
Figure 8.2: 2005-2011 Port Emissions Change, %.. 157
Figure 8.3: 2005-2011 OGV Emissions Comparison, %... 163
Figure 8.4: 2005-2011 Harbor Craft Emissions Comparison, %.. 167
Figure 8.5: 2005-2011 CHE Emissions Change, %... 170
Figure 8.6: CHE Count Comparison, %... 172
Figure 8.7: 2005-2011 CHE Activity Change, %... 173
Figure 8.8: 2005-2011 CHE Average Age Change, year ... 174
Figure 8.9: 2005-2011 Locomotive Emissions Change, %... 176
Figure 8.10: 2005-2011 HDV Emissions Change, %.. 179
Figure 8.11: 2005-2011 DPM Reductions to Date ... 181
Figure 8.12: 2005-2011 NO\textsubscript{x} Reductions to Date... 182
Figure 8.13: 2005-2011 SO\textsubscript{x} Reductions to Date... 183
Figure 9.1: 2005-2011 Port Emission Efficiency Metric Changes, %.. 185
Figure 9.2: 2005-2011 OGV Emission Efficiency Metric Changes, %... 187
Figure 9.3: 2005-2011 Harbor Craft Emission Efficiency Metric Changes,% 189
Figure 9.4: 2005-2011 CHE Emission Efficiency Metric Changes, %... 190
Figure 9.5: 2005-2011 Locomotive Emission Efficiency Metric Changes, %............................... 192
Figure 9.6: 2005-2011 HDV Emission Efficiency Metric Changes, %... 194
LIST OF TABLES

Table ES.1: 2005-2011 Container Throughput and Vessel Call Comparison, TEUs, Calls and % ... ES-4
Table ES.2: 2005-2011 Container and Cargo Throughputs and Change, % ... ES-5
Table ES.3: 2011 Port-related Emissions by Category, tpy ... ES-6
Table ES.4: 2011 Port-related GHG Emissions by Category, tonnes ... ES-6
Table ES.5: 2011 Port-related Emissions in the SoCAB Basin and within the Port Boundary, tpy .. ES-9
Table ES.6: 2005-2011 Port Emissions Comparison, tpy and % ... ES-13
Table ES.7: 2005-2011 Port GHG Emissions Comparison, tonnes and % ... ES-14
Table ES.8: 2005-2011 Port Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and % .. ES-14
Table ES.9: 2005-2011 Port Emissions Comparison by Source Category, tpy and %...... ES-16
Table ES.10: 2005-2011 Port GHG Emissions Comparison by Source Category, tonnes and % .. ES-17
Table ES.11: 2005-2011 Annual DPM Emissions by Category, tpy .. ES-19
Table ES.12: 2005-2011 Annual NOx Emissions by Category, tpy .. ES-20
Table ES.13: 2005-2011 Annual SOx Emissions by Category, tpy .. ES-21
Table 1.1: Average Route Distances, nm .. 6
Table 2.1: TEUs and Vessel Call Comparison, % ... 13
Table 2.2: 2011 Route Distribution of Calls .. 18
Table 2.3: 2011 Total OGV Movements .. 23
Table 2.4: Precautionary Zone Speed, knots .. 26
Table 2.5: Emission Factors for OGV Propulsion Engines using Residual Oil, g/kW-hr 28
Table 2.6: GHG Emission Factors for OGV Propulsion Engines using Residual Oil, g/kW-hr 28
Table 2.7: Low-Load Engine Emission Factor Regression Equation Variables 29
Table 2.8: EEAI Emission Factors, g/kW-hr ... 30
Table 2.9: Low Load Adjustment Multipliers for Emission Factors .. 32
Table 2.10: Emission Factors for Auxiliary Engines using Residual Oil, g/kW-hr 33
Table 2.11: GHG Emission Factors for Auxiliary Engines using Residual Oil, g/kW-hr 33
Table 2.12: 2011 Calculated Auxiliary Engine Load Defaults, kW .. 35
Table 2.13: 2011 Diesel Electric Cruise Ship Auxiliary Engine Load Defaults, kW 36
Table 2.14: Emission Factors for OGV Auxiliary Boilers using Residual Oil, g/kW-hr 36
Table 2.15: GHG Emission Factors for OGV Auxiliary Boilers using Residual Oil, g/kW-hr 36
Table 2.16: 2011 Auxiliary Boiler Energy Defaults, kW .. 38
Table 2.17: Fuel Correction Factors .. 39
Table 2.18: New Tanker Classification ... 41
Table 2.19: 2011 Ocean-going Vessel Emissions by Vessel Type, tpy .. 42
Table 2.20: 2011 Ocean-going Vessel GHG Emissions by Vessel Type, tonnes 42
Table 2.21: 2011 Ocean-going Vessel Emissions by Engine Type, tpy 43
Table 2.22: 2011 Ocean-going Vessel GHG Emissions by Engine Type, tonnes 44
Table 2.23: 2011 Ocean-going Vessel Emissions by Mode, tpy ... 45
Table 2.24: 2011 Ocean-going Vessel Greenhouse Gas Emissions by Mode, tonnes 46

Table 3.1: 2011 Main Engine Operating Parameters by Harbor Craft Type 78
Table 3.2: 2011 Auxiliary Engine Operating Parameters by Harbor Craft Type 79
Table 3.3: Harbor Craft Engine Load Factors .. 82
Table 3.4: Engine Deterioration Factors for Harbor Craft Diesel Engines 83
Table 3.5: Useful Life by Vessel Type, years ... 84
Table 3.6: Fuel Correction Factors for ULSD .. 85
Table 3.7: 2011 Harbor Craft Emissions by Engine Type, tpy ... 86
Table 3.8: 2011 Harbor Craft GHG Emissions by Engine Type, tonnes 87

Table 4.1: 2011 Engine Characteristics for All CHE Operating at the Port 94
Table 4.2: 2011 Distribution of CHE at Container Terminals ... 95
Table 4.3: 2011 Characteristics of CHE Engines at Container Terminals 96
Table 4.4: 2011 Characteristics of CHE Engines at Break-Bulk Terminals 97
Table 4.5: 2011 Characteristics of CHE Engines at Dry Bulk Terminals 97
Table 4.6: 2011 Characteristics of CHE Engines at Liquid Bulk Terminals 98
Table 4.7: 2011 Characteristics of CHE Engines at the Auto Terminal 98
Table 4.8: 2011 Characteristics of CHE Engines at the Cruise Terminal 98
Table 4.9: 2011 CHE Engine by Fuel Type ... 99
Table 4.10: 2011 Count of Diesel-Powered CHE by Type and Engine Standard 100
Table 4.11: CHE Engine Load Factors .. 102
Table 4.12: Fuel Correction Factors for ULSD ... 103
Table 4.13: 2011 CHE Emission Reduction Technologies by Equipment Type 103
Table 4.14: Emission Reductions Achieved from Control Technologies Used in CHE, % 104
Table 4.15: Control Factors for Control Technologies Used in CHE 105
Table 4.16: 2011 CHE Emissions by Terminal Type, tpy .. 106
Table 4.17: 2011 CHE GHG Emissions by Terminal Type, tonnes 106
Table 4.18: 2011 CHE Emissions by Equipment Type, tpy .. 108
Table 4.19: 2011 CHE GHG Emissions by Equipment Type, tonnes 109

Table 5.1: Switching Emission Factors, g/hp-hr .. 118
Table 5.2: GHG Switching Emission Factors, g/hp-hr ... 118
Table 5.3: Emission Factors for Line Haul Locomotives, g/hp-hr 121
Table 5.4: GHG Emission Factors for Line Haul Locomotives, g/hp-hr 121
Table 5.5: 2011 On-Port Line Haul Locomotive Activity .. 122
Table 5.6: Estimated Average Load Factor ... 122
Table 5.7: Assumptions for Gross Weight of Trains .. 124
Table 5.8: Train Travel Distance Assumptions .. 124
Table 5.9: 2011 Gross Ton-Mile, Fuel Use, and Horsepower-hour Estimate 125
Table 5.10: 2011 Port-Related Locomotive Estimated Emissions, tpy 125
Table 5.11: 2011 Port-Related Locomotive GHG Estimated Emissions, tonnes 126

Table 6.1: 2011 Summary of Reported Container Terminal Operating Characteristics 129
Table 6.2: 2011 Summary of Reported Non-Container Facility Operating Characteristics ... 129
Table 6.3: 2011 Estimated VMT and Idling Hours by Terminal .. 130
Table 6.4: On-road HDV Activity Modeling Results – Example
Table 6.5: Idle Emission Rates (g/hr)
Table 6.6: Speed-Specific Composite Emission Factors, grams/mile
Table 6.7: Speed-Specific GHG Emission Factors, grams/mile
Table 6.8: 2011 HDV Emissions, tpy
Table 6.9: 2011 HDV GHG Emissions, tonnes
Table 6.10: 2011 HDV Emissions Associated with Container Terminals, tpy
Table 6.11: 2011 HDV GHG Emissions Associated with Container Terminals, tonnes
Table 6.12: 2011 HDV Emissions Associated with Other Port Terminals, tpy
Table 6.13: 2011 HDV GHG Emissions Associated with Other Port Terminals, tonnes
Table 7.1: 2011 Port-related Emissions by Category, tpy
Table 7.2: 2011 Port-related GHG Emissions by Category, tonnes
Table 7.3: 2011 Port-related Emissions in the SoCAB Basin and within the Port Boundary, tpy
Table 7.4: 2011 Port-related GHG Emissions in the SoCAB Basin and within the Port Boundary, tonnes
Table 7.5: 2011 PM\textsubscript{10} Emissions Percentage Comparison, tpy and %
Table 7.6: 2011 PM\textsubscript{2.5} Emissions Percentage Comparison, tpy and %
Table 7.7: 2011 DPM Emissions Percentage Comparison, tpy and %
Table 7.8: 2011 NO\textsubscript{x} Emissions Percentage Comparison, tpy and %
Table 7.9: 2011 SO\textsubscript{2} Emissions by Category Percentage Comparison, tpy and %
Table 7.10: 2011 CO\textsubscript{2}E Emissions by Category Percentage Comparison, tonnes and %
Table 8.1: 2005-2011 Container Throughput and Vessel Call Comparison, TEUs, calls, and %
Table 8.2: 2005-2011 Port Emissions Comparison, tpy and %
Table 8.3: 2005-2011 Port GHG Emissions Comparison, tonnes and %
Table 8.4: 2005-2011 Port Emissions Comparison by Source Category, tpy and %
Table 8.5: 2005-2011 Port GHG Emissions Comparison by Source Category, tonnes and %
Table 8.6: 2005-2011 OGV Engine Activity Comparison, kW-hrs
Table 8.7: 2005-2011 Vessel Containers per Vessel Call Comparison, TEUs and calls
Table 8.8: 2005-2011 OGV Emission Reduction Strategies
Table 8.9: 2011 Route Distribution of Calls
Table 8.10: 2005-2011 OGV Emissions Comparison, tpy and %
Table 8.11: 2005-2011 OGV GHG Emissions Comparison, tonnes and %
Table 8.12: 2005-2011 Harbor Craft Engine and Activity Comparison, hours, kW-hr, and %
Table 8.13: 2005-2011 Engine Power and Activity Change, %
Table 8.14: 2005-2011 Harbor Craft Engine Tier Change, %
Table 8.15: 2005-2011 Harbor Craft Emissions Comparison, tpy and %
Table 8.16: 2005-2011 Harbor Craft GHG Emissions Comparison, tonnes and %
Table 8.17: 2005-2011 CHE Count and Engine Activity Comparison
Table 8.18: 2005-2011 CHE Emission Reduction Technology Equipment Count Comparison
Table 8.19: 2005-2011 CHE Equipment Count by Fuel Type Comparison
Table 8.20: 2005-2011 Cargo Handling Equipment Comparison of Emission Estimates, tpy and %
Table 8.21: 2005-2011 Cargo Handling Equipment Comparison of GHG Emission Estimates, tonnes and %
Table 8.22: 2005-2011 CHE Equipment Count and Change, %
Table 8.23: 2005-2011 CHE Activity by Equipment Type, hours and %
Table 8.24: 2005-2011 CHE Average Model Year and Age Comparison, year
Table 8.25: 2005-2011 Container Throughput Comparison, TEU and %
Table 8.26: 2005-2011 Locomotive Emissions Comparison, tpy and %
Table 8.27: 2005-2011 Locomotive GHG Emissions Comparison, tonnes and %
Table 8.28: 2005-2011 HDV Total Idling Time Comparison, hours and %
Table 8.29: 2005-2011 HDV Vehicle Miles Traveled Comparison, miles and %
Table 8.30: 2005-2011 HDV Fleet Weighted Average Engine Age Comparison, years
Table 8.31: 2005-2011 HDV Emissions Comparison, tpy and %
Table 8.32: 2005-2011 HDV GHG Emissions Comparison, tonnes and %
Table 8.33: 2005-2011 DPM Annual Emissions by Category, tpy
Table 8.34: 2005-2011 NO\textsubscript{x} Annual Emissions by Category, tpy
Table 8.35: 2005-2011 SO\textsubscript{x} Annual Emissions by Category, tons per year
Table 9.1: 2005-2011 Container and Cargo Throughputs and Change, %
Table 9.2: 2005-2011 Port Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.3: 2005-2011 Port Container Terminals Efficiency Metric Comparison, annual tons per 10,000 TEU and %
Table 9.4: 2005-2011 Port Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.5: 2005-2011 OGV Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.6: 2005-2011 OGV Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %
Table 9.7: 2005-2011 OGV Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.8: 2005-2011 Harbor Craft Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.9: 2005-2011 CHE Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.10: 2005-2011 CHE Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %
Table 9.11: 2005-2011 CHE Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.12: 2005-2011 Locomotive Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.13: 2005-2011 Locomotive Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %
Table 9.14: 2005-2011 Locomotive Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %
Table 9.15: 2005-2011 HDV Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %...193
Table 9.16: 2005-2011 HDV Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %...194
Table 9.17: 2005-2011 HDV Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 tonnes of cargo and %..195
ACKNOWLEDGEMENTS

The following individuals and their respective companies and organizations assisted with providing the technical and operational information described in this report, or by facilitating the process to obtain this information. We truly appreciate their time, effort, expertise, and cooperation. The Port of Long Beach and Starcrest Consulting Group, LLC (Starcrest) would like to recognize all who contributed their knowledge and understanding to the operations of Port-related facilities, commercial marine vessels, locomotives, and off-road and on-road vehicles at the Port-related entities:

David Seep, Burlington Northern Santa Fe Railway
Lyle Staley, Burlington Northern Santa Fe Railway
Mark Stehly, Burlington Northern Santa Fe Railway
Greg Bombard, Catalina Express
Craig Smith, Chemoil Marine Terminal
David Scott, Connolly-Pacific
Jeremy Anthony, Crescent Terminals
Hung Nguyen, Energia Logistics
Romen Cross, Foss Maritime
Eric Bayani, International Transportation Service
Gary Dalton, International Transportation Service
Thomas Jacobsen, Jacobsen Pilot Service
Scott Lebbin, Koch Carbon
Hal Burkey, Long Beach Container Terminal
Jennifer Doyle, Long Beach Sportfishing
Richard McKenna, Marine Exchange of Southern California
Robert Waterman, Metropolitan Stevedore (Metro Ports)
Eric Jen, Mitsubishi Cement
Ken Dobson, Morton Salt
Hun Nguyen, National Gypsum
Andrew Fox, Pacific Harbor Line
Greg Peters, Pacific Harbor Line
Wayne Caley, Pacific Tugboat Service
Pat Kennedy, Petro Diamond
Steve Clark, SSA Marine
Dana Brand, SSA Marine
Tyronne McLaine, Tesoro
Kevin Nicolello, Total Terminals International
Ken Pope, Total Terminals International
Jeff White, Toyota
Jon Germer, Union Pacific Railroad
Lanny Schmid, Union Pacific Railroad
Jeff Hogan, Vopak
Roy Blanco, Weyerhaeuser
ACKNOWLEDGEMENTS (CONT'D)

The Port of Long Beach and Starcrest would like to thank the following reviewers who contributed, commented, and coordinated the approach and reporting of the emissions inventory:

Nicole Dolney, California Air Resources Board
Ed Eckerle, South Coast Air Quality Management District
Randall Pasek, South Coast Air Quality Management District
Roxanne Johnson, U.S. Environmental Protection Agency

Starcrest would like to thank the following Port of Long Beach staff members for assistance during the development of the emissions inventory:

Rick Cameron
Thomas Jelenic
Allyson Teramoto
Heather Tomley

Authors: Archana Agrawal, Principal, Starcrest
 Guiselle Aldrete, Consultant, Starcrest
 Bruce Anderson, Principal, Starcrest
 Joseph Ray, Principal, Starcrest

Contributors: Steve Ettinger, Principal, Starcrest
 Ray Gorski, Consultant, Starcrest
 Lars Kristiansson, Consultant, Starcrest
 Jill Morgan, Consultant, Starcrest
 Rose Muller, Consultant, Starcrest
 Sam Wells, Consultant, Starcrest
 Paula Worley, Consultant, Starcrest

Document Preparation: Denise Anderson, Consultant, Starcrest

Cover: Melissa Silva, Principal, Starcrest
ACRONYMS AND ABBREVIATIONS

Act activity
AAPA American Association of Port Authorities
AQMP Air Quality Management Plan
ATB articulated tug and barge
BNSF Burlington Northern Santa Fe Railroad
BSFC brake specific fuel consumption
BTH Business Transportation and Housing Agency
BW breakwater
CAAP Clean Air Action Plan
CARB California Air Resources Board
CEC California Energy Commission
CF control factor
CHE cargo handling equipment
CH₄ methane
CO carbon monoxide
CO₂ carbon dioxide
CO₂E carbon dioxide equivalent
D distance
DB dynamic braking
DF deterioration factor
DMV Department of Motor Vehicles
DOC diesel oxidation catalyst
DPF diesel particulate filter
DPM diesel particulate matter
DR deterioration rate
DTR Drayage Truck Registry
DWT deadweight tonnage
E emissions
ECA Emission control area
EEAI Energy and Environmental Analysis, Inc.
EF emission factor
EI emissions inventory
EPA U.S. Environmental Protection Agency
FCF fuel correction factor
g/bhp-hr grams per brake horsepower-hour
g/hr grams per hour
g/kW-hr grams per kilowatt-hour
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/mi</td>
<td>grams per mile</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GVWR</td>
<td>gross vehicle weight rating</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HC</td>
<td>hydrocarbons</td>
</tr>
<tr>
<td>HC</td>
<td>Harbor craft</td>
</tr>
<tr>
<td>HDV</td>
<td>heavy-duty vehicle</td>
</tr>
<tr>
<td>HFO</td>
<td>heavy fuel oil</td>
</tr>
<tr>
<td>hp</td>
<td>horsepower</td>
</tr>
<tr>
<td>hrs</td>
<td>hours</td>
</tr>
<tr>
<td>ICTF</td>
<td>Intermodal Container Transfer Facility</td>
</tr>
<tr>
<td>IFO</td>
<td>intermediate fuel oil</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>ITB</td>
<td>integrated tug and barge</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>kW-hr</td>
<td>kilowatt-hour</td>
</tr>
<tr>
<td>lbs/day</td>
<td>pounds per day</td>
</tr>
<tr>
<td>LF</td>
<td>load factor</td>
</tr>
<tr>
<td>LLA</td>
<td>low load adjustment</td>
</tr>
<tr>
<td>Lloyd’s</td>
<td>Lloyd’s Register of Ships</td>
</tr>
<tr>
<td>LNG</td>
<td>liquefied natural gas</td>
</tr>
<tr>
<td>LPG</td>
<td>liquefied petroleum gas</td>
</tr>
<tr>
<td>LSI</td>
<td>large spark ignited (engine)</td>
</tr>
<tr>
<td>MarEx</td>
<td>Marine Exchange of Southern California</td>
</tr>
<tr>
<td>MCR</td>
<td>maximum continuous rating</td>
</tr>
<tr>
<td>MDO</td>
<td>marine diesel oil</td>
</tr>
<tr>
<td>MGO</td>
<td>marine gas oil</td>
</tr>
<tr>
<td>MMGT</td>
<td>million gross tons</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MMGTM</td>
<td>million gross ton-miles</td>
</tr>
<tr>
<td>MY</td>
<td>model year</td>
</tr>
<tr>
<td>N</td>
<td>north</td>
</tr>
<tr>
<td>N2O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>nm</td>
<td>nautical miles</td>
</tr>
<tr>
<td>NOx</td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>OCR</td>
<td>optical character recognition</td>
</tr>
<tr>
<td>OGV</td>
<td>ocean-going vessel</td>
</tr>
<tr>
<td>PHL</td>
<td>Pacific Harbor Line</td>
</tr>
</tbody>
</table>