Big Ship Ready

2012 was the year of ‘big ships’ at the Port of Long Beach. On September 30, 2012, the **MSC Beatrice** (pictured on cover) at 1,200 feet long, 167 feet wide and capable of carrying 13,798 container units docked at Long Beach’s Pier T on Terminal Island. It is one of the first of what is expected to be a string of larger container ships to be deployed by ocean carriers in Pacific Rim routes. Before 2012, the largest container ships serving North America had capacities of about 10,000 container units.

Larger ships are more cost effective for ocean carriers and reduce impacts on the environment by decreasing diesel consumption. However, few ports in the world have navigation channels deep enough to handle these massive ships. With a main channel at 76 feet deep—the deepest in North America, the Port of Long Beach is ‘big ship ready’. The Port of Long Beach is investing $4.5 billion over the next decade to modernize its facilities. Projects include the construction of the Middle Harbor terminal, the world’s greenest and most technologically advanced container terminal, and the replacement of the Gerald Desmond Bridge with a higher span that will allow larger ships to reach the back channels.

Cover Photos: Port of Long Beach
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. ES-1

SECTION 1 INTRODUCTION .. 1
 1.1 Reason for Study ... 1
 1.2 Scope of Study .. 2
 1.2.1 Pollutants .. 2
 1.2.2 Emission Sources ... 3
 1.2.3 Geographical Domain ... 4
 1.2.4 Sources Not Included in the Emissions Inventory ... 12
 1.3 Report Organization ... 12

SECTION 2 OCEAN-GOING VESSELS ... 13
 2.1 Source Description ... 13
 2.2 Shipping Routes .. 17
 2.3 Data and Information Acquisition .. 18
 2.3.1 Marine Exchange of Southern California .. 18
 2.3.2 Vessel Speed Reduction Program Data .. 19
 2.3.3 Jacobsen Pilot Service ... 20
 2.3.4 IHS Fairplay - Lloyd’s Register of Ships ... 20
 2.3.5 Vessel Boarding Program Survey Data .. 21
 2.3.6 Vessel Shore Power Data ... 21
 2.4 Operational Profiles .. 22
 2.5 Emissions Estimation Methodology .. 24
 2.5.1 Propulsion Engine Maximum Continuous Rated (MCR) Power 24
 2.5.2 Propulsion Engine Load Factor ... 24
 2.5.3 Propulsion Engine Activity ... 25
 2.5.4 Propulsion Engine Emission Factors ... 26
 2.5.5 Propulsion Engines Low Load Emission Factors ... 28
 2.5.6 Propulsion Engine Harbor Maneuvering Loads ... 32
 2.5.7 Propulsion Engine Power Defaults ... 33
 2.5.8 Auxiliary Engine Emission Factors .. 33
 2.5.9 Auxiliary Engine Load Defaults ... 34
 2.5.10 Auxiliary Boiler Emission Factors ... 36
 2.5.11 Auxiliary Boiler Load Defaults .. 37
 2.5.12 Fuel Correction Factors ... 39
 2.5.13 Emission Reduction Technologies .. 40
 2.5.14 Changes to methodology from previous years ... 41
 2.6 Emission Estimates .. 41
 2.6.1 Emission Estimates by Engine Type ... 43
 2.6.2 Emission Estimates by Engine Type ... 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Harbor Craft</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Source Description</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Geographical Domain</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Data and Information Acquisition</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Operational Profiles</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Emissions Estimation Methodology</td>
<td>54</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Load Factors</td>
<td>55</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Emission Factors, Deterioration Rates, and Useful Life</td>
<td>55</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Harbor Craft Greenhouse Gas Emission Factors</td>
<td>57</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Harbor Craft SO₂ Emissions</td>
<td>58</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Fuel Correction Factors</td>
<td>59</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Improvements to Methodology from Previous Years</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Emission Estimates</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Cargo Handling Equipment</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Source Description</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Geographical Domain</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Data and Information Acquisition</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Operational Profiles</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Emissions Estimation Methodology</td>
<td>74</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Emission Factors</td>
<td>75</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Load Factors and Fuel Correction Factors</td>
<td>75</td>
</tr>
<tr>
<td>4.5.3</td>
<td>CHE Emissions Reduction Technologies and Control Factors</td>
<td>76</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Improvements to Methodology from Previous Years</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Emission Estimates</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Railroad Locomotives</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Source Description</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Geographical Domain</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Data and Information Acquisition</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>Operational Profiles</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Emissions Estimation Methodology</td>
<td>88</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Switching Locomotive Emissions</td>
<td>89</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Line Haul Locomotive Emissions</td>
<td>92</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Improvements to Methodology from Previous Years</td>
<td>100</td>
</tr>
<tr>
<td>5.6</td>
<td>Emission Estimates</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Heavy-Duty Vehicles</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Source Description</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Geographical Domain</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Data and Information Acquisition</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Operational Profiles</td>
<td>105</td>
</tr>
<tr>
<td>6.4.1</td>
<td>On-Terminal Truck Activity</td>
<td>105</td>
</tr>
<tr>
<td>6.4.2</td>
<td>On-Road Truck Activity</td>
<td>107</td>
</tr>
</tbody>
</table>
6.5 Emissions Estimation Methodology ... 110
 6.5.1 Model Year Distribution ... 111
 6.5.2 The EMFAC Model ... 112
 6.5.3 Overview of the EMFAC2011 Emissions Calculation Methodology 112
 6.5.4 Speed-Specific Emission Factors ... 113
 6.5.5 Improvements to Methodology from Previous Years 115

6.6 Emission Estimates ... 116

SECTION 7 SUMMARY OF 2012 EMISSION RESULTS .. 118

SECTION 8 COMPARISON OF 2012 AND 2005 FINDINGS AND EMISSION ESTIMATES 131
 8.1 Ocean-Going Vessels .. 137
 8.2 Harbor Craft .. 140
 8.3 Cargo Handling Equipment ... 143
 8.4 Locomotives .. 149
 8.5 Heavy-Duty Vehicles ... 151
 8.6 CAAP Progress ... 155

SECTION 9 METRICS PER SOURCE CATEGORY .. 159

SECTION 10 LOOKING FORWARD ... 171

APPENDIX A REGULATORY AND SAN PEDRO BAY PORTS CLEAN AIR ACTION PLAN
 MEASURES
APPENDIX B OCEAN-GOING VESSELS
APPENDIX C HARBOUR CRAFT
APPENDIX D CARGO-HANDLING EQUIPMENT
APPENDIX E HEAVY-DUTY VEHICLES
LIST OF FIGURES

Figure ES.1: 2012 Port of Long Beach Emissions Inventory Domain ... ES-2
Figure ES.2: 2012 PM_{10} Emissions in the South Coast Air Basin, % ... ES-9
Figure ES.3: 2012 PM_{2.5} Emissions in the South Coast Air Basin, % ... ES-9
Figure ES.4: 2012 DPM Emissions in the South Coast Air Basin, % ... ES-10
Figure ES.5: 2012 NO_{x} Emissions in the South Coast Air Basin, % ... ES-10
Figure ES.6: 2012 SO_{x} Emissions in the South Coast Air Basin, % ... ES-10
Figure 1.1: OGV and Harbor Vessel Out of Port Geographical Extent ... 5
Figure 1.2: Cargo Handling Equipment Geographical Extent Port of Long Beach Map of Terminals 7
Figure 1.3: Railroad Locomotives and Heavy Duty Vehicles Geographical Extent South Coast Air Basin Boundary ... 8
Figure 1.4: Port Area Rail Lines .. 9
Figure 1.5: Air Basin Major Intermodal Rail Routes .. 10
Figure 1.6: Alameda Corridor .. 11
Figure 2.1: 2012 Distribution of Calls by Vessel Type ... 16
Figure 2.2: Major Shipping Routes ... 17
Figure 2.3: 2012 Ocean-going Vessel Emissions by Vessel Type, % ... 42
Figure 2.4: 2012 Ocean-going Vessel Emissions by Engine Type, % ... 43
Figure 2.5: 2012 Ocean-going Vessel Emissions by Mode, % .. 45
Figure 3.1: 2012 Distribution Commercial Harbor Craft ... 48
Figure 3.2: 2012 Distribution of Harbor Craft Engines by Engine Standards, % ... 54
Figure 3.3: 2012 Harbor Craft Emissions by Harbor Craft Type, % ... 62
Figure 4.1: 2012 Distribution of Port CHE by Equipment Type .. 69
Figure 4.2: 2012 Distribution of Port CHE by Terminal Type, % ... 69
Figure 4.3: 2012 CHE Emissions by Terminal Type, % .. 79
Figure 4.4: 2012 CHE Emissions by Equipment Type, % .. 82
Figure 5.1: Typical Line Haul Locomotives ... 85
Figure 5.2: PHL Switching Locomotive .. 86
Figure 5.3: 2012 Port-Related Locomotive Operations Estimated Emissions, % ... 102
Figure 6.1: Typical Container Trucks .. 104
Figure 6.2: Port and Near-Port Roadways .. 108
Figure 6.3: Regional Map ... 109
Figure 6.4: 2012 Engine Model Year Distribution of the Heavy-Duty Truck Fleet .. 111
Figure 7.1: 2012 Port-related Emissions by Category, % .. 119
Figure 7.2: 2012 PM_{10} Emissions in the South Coast Air Basin, % ... 123
Figure 7.3: 2012 PM_{2.5} Emissions in the South Coast Air Basin, % ... 123
Figure 7.4: 2012 DPM Emissions in the South Coast Air Basin, % ... 124
Figure 7.5: 2012 NO_{x} Emissions in the South Coast Air Basin, % ... 124
Figure 7.6: 2012 SO_{x} Emissions in the South Coast Air Basin, % ... 124
Figure 8.1: 2005-2012 Container Throughput and Vessel Call Change, % ... 131
Figure 8.2: 2005-2012 Port Emissions Change, % .. 132
Figure 8.3: 2005-2012 OGV Emissions Comparison, % ... 139
Figure 8.4: 2005-2012 Harbor Craft Emissions Comparison, % ... 142
Figure 8.5: 2005-2012 CHE Emissions Change, % ... 145
Figure 8.6: CHE Count Comparison, % ... 147
Figure 8.7: 2005-2012 CHE Activity Change, % ... 148
Figure 8.8: 2005-2012 CHE Average Age Change, year ... 149
Figure 8.9: 2005-2012 Locomotive Emissions Change, % .. 151
Figure 8.10: 2005-2012 HDV Emissions Change, % ... 154
Figure 8.11: 2005-2012 DPM Reductions to Date ... 156
Figure 8.12: 2005-2012 NOx Reductions to Date ... 157
Figure 8.13: 2005-2012 SO2 Reductions to Date ... 158
Figure 9.1: 2005-2012 Port Emission Efficiency Metric Changes, % 160
Figure 9.2: 2005-2012 OGV Emission Efficiency Metric Changes, % 162
Figure 9.3: 2005-2012 Harbor Craft Emission Efficiency Metric Changes, % 164
Figure 9.4: 2005-2012 CHE Emission Efficiency Metric Changes, % 165
Figure 9.5: 2005-2012 Locomotive Emission Efficiency Metric Changes, % 167
Figure 9.6: 2005-2012 HDV Emission Efficiency Metric Changes, % 169
LIST OF TABLES

Table 1.1: 2005-2012 Port-related Airs Emissions Comparison by Source Category.. ES-4
Table 1.2: 2005-2012 Port-related GHG Emissions by Source Category... ES-5
Table 1.3: 2005-2012 Container Throughput and Vessel Call Comparison ... ES-6
Table 1.4: 2005-2012 Port Emissions Efficiency Metric Comparison, tons per 10,000 TEU......................... ES-6
Table 1.5: 2005-2012 Port Emission Efficiency Metric Comparison, tons per 100,000 metric tons..... ES-6
Table 1.6: 2005-2012 Emissions Reductions Compared to CAAP San Pedro Bay Emissions Reduction Standards.. ES-8
Table 2.1: Average Route Distances, nm.. 6
Table 2.2: TEUs and Vessel Call Comparison, %.. 16
Table 2.3: 2008 - 2012 Distribution of Calls by Route .. 18
Table 2.4: 2012 Total OGV Movements.. 23
Table 2.5: Precautionary Zone Average Speed, knots.. 25
Table 2.6: Emission Factors for OGV Propulsion Engines using HFO and MDO, g/kW-hr.............................. 27
Table 2.7: Low-Load Engine Emission Factor Regression Equation Variables ... 29
Table 2.8: EEFI Emission Factors, g/kW-hr... 30
Table 2.9: Low Load Adjustment Multipliers for Emission Factors... 32
Table 2.10: Emission Factors for Auxiliary Engines using HFO and MDO, g/kW-hr.................................... 33
Table 2.11: GHG Emission Factors for Auxiliary Engines using HFO and MDO, g/kW-hr............................ 34
Table 2.12: 2012 Average Auxiliary Engine Load Defaults, kW ... 35
Table 2.13: 2012 Diesel Electric Cruise Ship Average Auxiliary Engine Load Defaults, kW.......................... 36
Table 2.14: Emission Factors for OGV Auxiliary Boilers using HFO and MDO, g/kW-hr.......................... 36
Table 2.15: GHG Emission Factors for OGV Auxiliary Boilers using HFO and MDO, g/kW-hr............... 37
Table 2.16: 2012 Auxiliary Boiler Energy Defaults, kW ... 38
Table 2.17: Fuel Correction Factors .. 39
Table 2.18: 2012 Ocean-going Vessel Emissions by Vessel Type, tons ... 41
Table 2.19: 2012 Ocean-going Vessel GHG Emissions by Vessel Type, metric tons 42
Table 2.20: 2012 Ocean-going Vessel Emissions by Engine Type, tons... 43
Table 2.21: 2012 Ocean-going Vessel GHG Emissions by Engine Type, metric tons 43
Table 2.22: 2012 Ocean-going Vessel Emissions by Mode, tons .. 44
Table 2.23: 2012 Ocean-going Vessel Greenhouse Gas Emissions by Mode, metric tons 45
Table 3.1: 2012 Main Engine Characteristics by Harbor Craft Type ... 51
Table 3.2: 2012 Auxiliary Engine Characteristics by Harbor Craft Type .. 52
Table 3.3: Harbor Craft Engine Load Factors .. 55
Table 3.4: Engine Deterioration Factors for Harbor Craft Diesel Engines.. 56
Table 3.5: Useful Life by Harbor Craft Type, years.. 57
Table 3.6: Harbor Craft ULSD Fuel Correction Factors .. 59
Table 3.7: 2012 Harbor Craft Emissions by Engine Type, tons .. 60
Table 3.8: 2012 Harbor Craft GHG Emissions by Engine Type, metric tons .. 61
Table 4.1: 2012 Engine Characteristics for All CHE Operating at the Port.. 68
Table 4.2: 2012 Distribution of CHE at Container Terminals ... 70
Table 4.3: 2012 Characteristics of CHE Engines at Container Terminals ... 70
Table 4.4: 2012 Characteristics of CHE Engines at Break-Bulk Terminals ... 71
Table 4.5: 2012 Characteristics of CHE Engines at Dry Bulk Terminals ... 71
Table 4.6: 2012 Characteristics of CHE Engines at Liquid Bulk Terminals .. 72
Table 4.7: 2012 Characteristics of CHE Engines at Auto Terminals ... 72
Table 4.8: 2012 Characteristics of CHE Engines at the Long Beach Cruise Terminal 72
Table 4.9: 2012 CHE Engines by Fuel Type .. 73

Port of Long Beach

July 2013
2012 Air Emissions Inventory

Table 4.10: 2012 Count of Diesel-Powered CHE by Type and Engine Standard
Table 4.11: Cargo Handling Equipment Engine Load Factors
Table 4.12: Fuel Correction Factors for ULSD
Table 4.13: Fuel Correction Factors for Gasoline
Table 4.14: 2012 CHE Emission Reduction Technologies by Equipment Type
Table 4.15: Emission Reductions Achieved from Control Technologies Used in CHE,
Table 4.16: Control Factors for Control Technologies Used in CHE
Table 4.17: 2012 CHE Emissions by Terminal Type, tons per year
Table 4.18: 2012 CHE GHG Emissions by Terminal Type, metric tons
Table 4.19: 2012 CHE Emissions by Equipment Type, tons
Table 4.20: 2012 CHE GHG Emissions by Equipment Type, metric tons
Table 5.1: Switching Emission Factors, g/hp-hr
Table 5.2: GHG Switching Emission Factors, g/hp-hr
Table 5.3: MOU Compliance Data, MWhrs and g NOx/hp-hr
Table 5.4: Fleet MWhrs and PM, HC, CO Emission Factors, g/hp-hr
Table 5.5: Emission Factors for Line Haul Locomotives, g/hp-hr
Table 5.6: GHG Emission Factors for Line Haul Locomotives, g/hp-hr
Table 5.7: 2012 Estimated On-Port Line Haul Locomotive Activity
Table 5.8: Estimated Average Load Factor
Table 5.9: Assumptions for Gross Weight of Trains
Table 5.10: 2012 Gross Ton-Mile, Fuel Use, and Horsepower-hour Estimate
Table 5.11: 2012 Port-Related Locomotive Estimated Emissions, tons
Table 5.12: 2012 Port-Related Locomotive GHG Estimated Emissions, metric tons
Table 6.1: 2012 Summary of Reported Container Terminal Operating Characteristics
Table 6.2: 2012 Summary of Reported Non-Container Facility Operating Characteristics
Table 6.3: 2012 Estimated On-Terminal VMT and Idling Hours by Terminal
Table 6.4: On-road HDV Activity Modeling Results – Example
Table 6.5: Idle Emission Rates (g/hr)
Table 6.6: Speed-Specific Composite Emission Factors
Table 6.7: Speed-Specific GHG Emission Factors
Table 6.8: 2012 HDV Emissions, tons
Table 6.9: 2012 HDV GHG Emissions, metric tons
Table 6.10: 2012 HDV Emissions Associated with Container Terminals, tons
Table 6.11: 2012 HDV GHG Emissions Associated with Container Terminals, metric tons
Table 6.12: 2012 HDV Emissions Associated with Other Port Terminals, tons
Table 6.13: 2012 HDV GHG Emissions Associated with Other Port Terminals, metric tons
Table 7.1: 2012 Port-related Emissions by Category, tons
Table 7.2: 2012 Port-related GHG Emissions by Category, metric tons
Table 7.3: 2012 Port-related Emissions Percent Contribution by Source Category
Table 7.4: 2012 Port-related Emissions in the SoCAB Basin and within the Port Boundary, tons
Table 7.5: 2012 Port-related GHG Emissions in the SoCAB Basin and within the Port Domain, metric tons
Table 7.6: 2012 PM10 Emissions Percentage Comparison, tons and %
Table 7.7: 2012 PM2.5 Emissions Percentage Comparison, tons and %
Table 7.8: 2012 DPM Emissions Percentage Comparison, tons and %
Table 7.9: 2012 NOx Emissions Percentage Comparison, tons and %
Table 7.10: 2012 SO2 Emissions by Category Percentage Comparison, tons and %
Table 7.11: 2012 CO2e Emissions by Category Percentage Comparison, metric tons and %
Table 8.1: 2005-2012 Container Throughput and Vessel Call Comparison
Table 8.2: 2005-2012 Port Emissions Comparison, tons and %
Table 8.3: 2005-2012 Port GHG Emissions Comparison, metric tons and % 133
Table 8.4: 2005-2012 Port Emissions Comparison by Source Category, tons and % 134
Table 8.5: 2005-2012 Port GHG Emissions Comparison by Source Category, metric tons and % 135
Table 8.6: 2005-2012 Port Emissions Comparison ... 136
Table 8.7: 2005-2012 OGV Engine Activity Comparison, kW-hrs ... 137
Table 8.8: 2005-2012 Vessel Containers per Vessel Call Comparison, TEUs and calls 137
Table 8.9: 2005-2012 OGV Emission Reduction Strategies ... 138
Table 8.10: 2012 Percentage Distribution of Calls by Route ... 138
Table 8.11: 2005-2012 OGV Emissions Comparison, tons and % ... 139
Table 8.12: 2005-2012 OGV GHG Emissions Comparison, metric tons and % 140
Table 8.13: 2005-2012 Harbor Craft Engine and Activity Comparison, hours, kW-hr, and % 140
Table 8.14: 2005-2012 Engine Power and Activity Change, % ... 141
Table 8.15: 2005-2012 Harbor Craft Engine Tier Change, % ... 141
Table 8.16: 2005-2012 Harbor Craft Emissions Comparison, tons and % 142
Table 8.17: 2005-2012 Harbor Craft GHG Emissions Comparison, metric tons and % 143
Table 8.18: 2005-2012 CHE Count and Engine Activity Comparison ... 143
Table 8.19: 2005-2012 CHE Emission Reduction Technology Equipment Count Comparison 144
Table 8.20: 2005-2012 CHE Equipment Count by Fuel Type ... 144
Table 8.21: 2005-2012 Cargo Handling Equipment Comparison of Emission Estimates, tons and % 145
Table 8.22: 2005-2012 Cargo Handling Equipment Comparison of GHG Emission Estimates, metric tons and % ... 146
Table 8.23: 2005-2012 CHE Equipment Count and Change, % ... 146
Table 8.24: 2005-2012 CHE Activity by Equipment Type, hours and % 147
Table 8.25: 2005-2012 CHE Average Model Year and Age Comparison, year 148
Table 8.26: 2005-2012 Container Throughput Comparison, TEU and % 149
Table 8.27: 2005-2012 Locomotive Emissions Comparison, tons and % 150
Table 8.28: 2005-2012 Locomotive GHG Emissions Comparison, metric tons and % 150
Table 8.29: 2005-2012 HDV Total Idling Time Comparison, hours and % 152
Table 8.30: 2005-2012 HDV Vehicle Miles Traveled Comparison, miles and % 152
Table 8.31: 2005-2012 HDV Fleet Weighted Average Engine Age Comparison, years 153
Table 8.32: 2005-2012 HDV Emissions Comparison, tons and % .. 153
Table 8.33: 2005-2012 HDV GHG Emissions Comparison, metric tons and % 154
Table 8.34: 2005-2012 DPM Annual Emissions by Category, tpy .. 155
Table 8.35: 2005-2012 NOx Annual Emissions by Category, tpy .. 157
Table 8.36: 2005-2012 SOx Annual Emissions by Category, tons per year 158
Table 9.1: 2005-2012 Container and Cargo Throughputs and Change, % 159
Table 9.2: 2005-2012 Port Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and % ... 159
Table 9.3: 2005-2012 Port Container Terminals Efficiency Metric Comparison, annual tons per 10,000 TEU and % ... 160
Table 9.4: 2005-2012 Port Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and % 161
Table 9.5: 2005-2012 OGV Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and % ... 161
Table 9.6: 2005-2012 OGV Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and % ... 161
Table 9.7: 2005-2012 OGV Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and % 163
Table 9.8: 2005-2012 Harbor Craft Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and % ... 163
Table 9.9: 2005-2012 CHE Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...164
Table 9.10: 2005-2012 CHE Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %...165
Table 9.11: 2005-2012 CHE Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...166
Table 9.12: 2005-2012 Locomotive Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...166
Table 9.13: 2005-2012 Locomotive Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %...167
Table 9.14: 2005-2012 Locomotive Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...168
Table 9.15: 2005-2012 HDV Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...168
Table 9.16: 2005-2012 HDV Container Terminals Emission Efficiency Metric Comparison, annual tons per 10,000 TEU and %...169
Table 9.17: 2005-2012 HDV Non-Container Terminals Emission Efficiency Metric Comparison, annual tons per 100,000 metric tons of cargo and %...170
ACKNOWLEDGEMENTS

The following individuals and their respective companies and organizations assisted with providing the technical and operational information described in this report, or by facilitating the process to obtain this information. We truly appreciate their time, effort, expertise, and cooperation. The Port of Long Beach and Starcrest Consulting Group, LLC (Starcrest) would like to recognize all who contributed their knowledge and understanding to the operations of Port-related facilities, commercial marine vessels, locomotives, and off-road and on-road vehicles at the Port-related entities:

Greg Bombard, Catalina Express
Craig Smith, Chemoil Marine Terminal
David Scott, Connolly-Pacific
Jeremy Anthony, Crescent Terminals
Hung Nguyen, Energia Logistics
Romen Cross, Foss Maritime
Eric Bayani, International Transportation Service
Gary Dalton, International Transportation Service
Thomas Jacobsen, Jacobsen Pilot Service
Scott Lebbin, Koch Carbon
Hal Burkey, Long Beach Container Terminal
Jennifer Doyle, Long Beach Sportfishing
Robert Waterman, Metropolitan Stevedore (Metro Ports)
Eric Jen, Mitsubishi Cement
Ken Dobson, Morton Salt
Hun Nguyen, National Gypsum
Andrew Fox, Pacific Harbor Line
Greg Peters, Pacific Harbor Line
Wayne Caley, Pacific Tugboat Service
Pat Kennedy, Petro Diamond
Steve Clark, SSA Marine
Tyrone McLaine, Tesoro
Kevin Nicolello, Total Terminals International
Ken Pope, Total Terminals International
Jeff White, Toyota
Jeff Hogan, Vopak
Roy Blanco, Weyerhaeuser
ACKNOWLEDGEMENTS (CONT'D)

The Port of Long Beach and Starcrest would like to thank the following reviewers who contributed, commented, and coordinated the approach and reporting of the emissions inventory:

Nicole Dolney, California Air Resources Board
Ed Eckerle, South Coast Air Quality Management District
Randall Pasek, South Coast Air Quality Management District
Roxanne Johnson, U.S. Environmental Protection Agency

Starcrest would like to thank the following Port of Long Beach staff members for assistance during the development of the emissions inventory:

Rick Cameron
Allyson Teramoto
Heather Tomley

Authors:
Archana Agrawal, Principal, Starcrest
Guiselle Aldrete, Consultant, Starcrest
Bruce Anderson, Principal, Starcrest
Joseph Ray, Principal, Starcrest

Contributors:
Steve Ettinger, Principal, Starcrest
Ray Gorski, Consultant, Starcrest
Ginny Hessenauer, Consultant, Starcrest
Jill Morgan, Consultant, Starcrest
Rose Muller, Consultant, Starcrest
Paula Worley, Consultant, Starcrest

Document Preparation:
Denise Anderson, Consultant, Starcrest

Cover:
Melissa Silva, Principal, Starcrest
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act</td>
<td>activity</td>
</tr>
<tr>
<td>AAPA</td>
<td>American Association of Port Authorities</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan</td>
</tr>
<tr>
<td>ATB</td>
<td>articulated tug and barge</td>
</tr>
<tr>
<td>BNSF</td>
<td>Burlington Northern Santa Fe Railroad</td>
</tr>
<tr>
<td>BSFC</td>
<td>brake specific fuel consumption</td>
</tr>
<tr>
<td>BTH</td>
<td>Business Transportation and Housing Agency</td>
</tr>
<tr>
<td>BW</td>
<td>breakwater</td>
</tr>
<tr>
<td>CAAP</td>
<td>Clean Air Action Plan</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CF</td>
<td>control factor</td>
</tr>
<tr>
<td>CHE</td>
<td>cargo handling equipment</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂E</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>D</td>
<td>distance</td>
</tr>
<tr>
<td>DB</td>
<td>dynamic braking</td>
</tr>
<tr>
<td>DF</td>
<td>deterioration factor</td>
</tr>
<tr>
<td>DMV</td>
<td>Department of Motor Vehicles</td>
</tr>
<tr>
<td>DOC</td>
<td>diesel oxidation catalyst</td>
</tr>
<tr>
<td>DPF</td>
<td>diesel particulate filter</td>
</tr>
<tr>
<td>DPM</td>
<td>diesel particulate matter</td>
</tr>
<tr>
<td>DR</td>
<td>deterioration rate</td>
</tr>
<tr>
<td>DTR</td>
<td>Drayage Truck Registry</td>
</tr>
<tr>
<td>DWT</td>
<td>deadweight tonnage</td>
</tr>
<tr>
<td>E</td>
<td>emissions</td>
</tr>
<tr>
<td>ECA</td>
<td>Emission control area</td>
</tr>
<tr>
<td>EEAI</td>
<td>Energy and Environmental Analysis, Inc.</td>
</tr>
<tr>
<td>EF</td>
<td>emission factor</td>
</tr>
<tr>
<td>EI</td>
<td>emissions inventory</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FCF</td>
<td>fuel correction factor</td>
</tr>
<tr>
<td>g/bhp-hr</td>
<td>grams per brake horsepower-hour</td>
</tr>
<tr>
<td>g/hr</td>
<td>grams per hour</td>
</tr>
<tr>
<td>g/kW-hr</td>
<td>grams per kilowatt-hour</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>particulate matter less than 10 microns in diameter</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>particulate matter less than 2.5 microns in diameter</td>
</tr>
<tr>
<td>POLA</td>
<td>Port of Los Angeles</td>
</tr>
<tr>
<td>POLB</td>
<td>Port of Long Beach</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PZ</td>
<td>precautionary zone</td>
</tr>
<tr>
<td>Reefer</td>
<td>refrigerated vessel</td>
</tr>
<tr>
<td>RFID</td>
<td>radio frequency identification</td>
</tr>
<tr>
<td>RL</td>
<td>rail locomotive</td>
</tr>
<tr>
<td>RO</td>
<td>residual oil</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RSD</td>
<td>Regulatory Support Document</td>
</tr>
<tr>
<td>RTG</td>
<td>rubber tired gantry crane</td>
</tr>
<tr>
<td>S</td>
<td>sulfur</td>
</tr>
<tr>
<td>SCAG</td>
<td>Southern California Association of Governments</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SFC</td>
<td>specific fuel consumption</td>
</tr>
<tr>
<td>SoCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>oxides of sulfur</td>
</tr>
<tr>
<td>SSA</td>
<td>Stevedoring Services of America</td>
</tr>
<tr>
<td>TEU</td>
<td>twenty-foot equivalent unit</td>
</tr>
<tr>
<td>tpd</td>
<td>tons per day</td>
</tr>
<tr>
<td>tpy</td>
<td>tons per year</td>
</tr>
<tr>
<td>TWG</td>
<td>technical working group</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>ULCC</td>
<td>ultra large crude carriers</td>
</tr>
<tr>
<td>ULSD</td>
<td>ultra low sulfur diesel</td>
</tr>
<tr>
<td>UP</td>
<td>Union Pacific Railroad</td>
</tr>
<tr>
<td>USCG</td>
<td>U.S Coast Guard</td>
</tr>
<tr>
<td>VBP</td>
<td>vessel boarding program</td>
</tr>
<tr>
<td>VLCC</td>
<td>very large crude carrier</td>
</tr>
<tr>
<td>VLCS</td>
<td>very large cargo ship</td>
</tr>
<tr>
<td>VMT</td>
<td>vehicle miles of travel</td>
</tr>
<tr>
<td>VSR</td>
<td>vessel speed reduction</td>
</tr>
<tr>
<td>VTS</td>
<td>vessel traffic service</td>
</tr>
<tr>
<td>W</td>
<td>west</td>
</tr>
<tr>
<td>ZH</td>
<td>zero hour</td>
</tr>
<tr>
<td>ZMR</td>
<td>zero mile rate</td>
</tr>
</tbody>
</table>